Oscar is written in julia

 \Longrightarrow we need to start julia

Oscar is written in julia

 \implies we need to start julia

\$ julia

julia>

That was quick!

```
Starting Oscar – Step 2: OSCAR
```

julia> using Oscar
.....

This takes a while.

```
Starting Oscar – Step 2: OSCAR
```

```
julia> using Oscar
```

This takes a while.

```
. . .
```

julia>

Now we are all set!

What is Oscar?

http://oscar-system.org/

Finding help on your own

Structured documentation online (constantly evolving): https://www.oscar-system.org/documentation/

If you have a guess, what a function might be called:

- enter the guessed function name with a '?' in front of it
- use tab-expansion to explore potential function names
- use '@less ' followed by a call to a function to see the code, which will be run by the command

Now its your turn!

Baby Task one:

Verify

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

for at least 5 natural numbers n of your choice.

Now its your turn!

Baby Task one:

Verify

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

for at least 5 natural numbers n of your choice.

Baby Task two:

Create a list of all primes up to 500 by implementing the sieve of Eratosthenes.

(i.e. successively dropping the multiplies from the list)

And yet some more!

Baby Task three:

Verify in two different ways that

$$x^7 - x = \prod_{i=0}^6 (x - i) \in \mathbb{F}_7[x].$$

And yet some more!

Baby Task three:

Verify in two different ways that

$$x^7 - x = \prod_{i=0}^6 (x - i) \in \mathbb{F}_7[x].$$

Baby Task four:

Consider the Klein 4-group V as a subgroup of the symmetric group Sym_4 and verify the theorem of Lagrange

$$|\mathit{Sym}_4| = |\mathit{Sym}_4 : V| \cdot |V|$$

And yet some more!

Baby Task three:

Verify in two different ways that

$$x^7 - x = \prod_{i=0}^6 (x - i) \in \mathbb{F}_7[x].$$

Baby Task four:

Consider the Klein 4-group V as a subgroup of the symmetric group Sym_4 and verify the theorem of Lagrange

$$|Sym_4| = |Sym_4: V| \cdot |V|$$

By the way: what properties of V can you directly check with Oscar?